HiSilicon Kirin 710A vs HiSilicon Kirin 935
The HiSilicon Kirin 710A and the HiSilicon Kirin 935 are two processors developed by Huawei's semiconductor subsidiary, HiSilicon. While both processors are equipped with 8 cores and utilize the ARMv8-A instruction set, they differ in terms of their architecture, lithography, number of transistors, and TDP (Thermal Design Power).
Starting with the Kirin 710A, it features a combination of 4x Cortex-A73 cores clocked at 2.0 GHz and 4x Cortex-A53 cores clocked at 1.7 GHz. This architecture allows for a balance between performance and efficiency. Utilizing a 14 nm lithography process, it is more power-efficient due to smaller and more densely packed transistors. With a total of 5500 million transistors, the Kirin 710A offers a high level of processing power. Additionally, it has a TDP of 5 Watts, indicating a lower power consumption.
Moving on to the Kirin 935, its architecture consists of 4x Cortex-A53 cores clocked at 2.2 GHz and 4x Cortex-A53 cores clocked at 1.5 GHz. Although it has a slightly higher clock speed, the 28 nm lithography process makes it less efficient compared to the Kirin 710A. The number of transistors is also significantly lower at 1000 million, which may affect its overall performance. Furthermore, the TDP of the Kirin 935 is 7 Watts, indicating a higher power consumption compared to the Kirin 710A.
In summary, the HiSilicon Kirin 710A offers a more advanced architecture, a smaller lithography process, a substantially higher number of transistors, and a lower TDP compared to the HiSilicon Kirin 935. These specifications suggest that the Kirin 710A is likely to deliver better performance while consuming less power. However, it is important to note that other factors, such as software optimization and additional features, may also affect the overall performance and user experience of the processors.
Starting with the Kirin 710A, it features a combination of 4x Cortex-A73 cores clocked at 2.0 GHz and 4x Cortex-A53 cores clocked at 1.7 GHz. This architecture allows for a balance between performance and efficiency. Utilizing a 14 nm lithography process, it is more power-efficient due to smaller and more densely packed transistors. With a total of 5500 million transistors, the Kirin 710A offers a high level of processing power. Additionally, it has a TDP of 5 Watts, indicating a lower power consumption.
Moving on to the Kirin 935, its architecture consists of 4x Cortex-A53 cores clocked at 2.2 GHz and 4x Cortex-A53 cores clocked at 1.5 GHz. Although it has a slightly higher clock speed, the 28 nm lithography process makes it less efficient compared to the Kirin 710A. The number of transistors is also significantly lower at 1000 million, which may affect its overall performance. Furthermore, the TDP of the Kirin 935 is 7 Watts, indicating a higher power consumption compared to the Kirin 710A.
In summary, the HiSilicon Kirin 710A offers a more advanced architecture, a smaller lithography process, a substantially higher number of transistors, and a lower TDP compared to the HiSilicon Kirin 935. These specifications suggest that the Kirin 710A is likely to deliver better performance while consuming less power. However, it is important to note that other factors, such as software optimization and additional features, may also affect the overall performance and user experience of the processors.
AnTuTu 10
Total Score
GeekBench 6 Single-Core
Score
GeekBench 6 Multi-Core
Score
CPU cores and architecture
Architecture | 4x 2.0 GHz – Cortex-A73 4x 1.7 GHz – Cortex-A53 |
4x 2.2 GHz – Cortex-A53 4x 1.5 GHz – Cortex-A53 |
Number of cores | 8 | 8 |
Instruction Set | ARMv8-A | ARMv8-A |
Lithography | 14 nm | 28 nm |
Number of transistors | 5500 million | 1000 million |
TDP | 5 Watt | 7 Watt |
Memory (RAM)
Max amount | up to 6 GB | up to 8 GB |
Memory type | LPDDR4 | LPDDR3 |
Memory frequency | 1866 MHz | 800 MHz |
Memory-bus | 2x32 bit | 2x32 bit |
Storage
Storage specification | UFS 2.1 | UFS 2.0 |
Graphics
GPU name | Mali-G51 MP4 | Mali-T628 MP4 |
GPU Architecture | Mali Bifrost | Mali Midgard |
GPU frequency | 1000 MHz | 680 MHz |
Execution units | 4 | 4 |
Shaders | 64 | 64 |
DirectX | 12 | 11 |
OpenCL API | 2.0 | 1.2 |
Vulkan API | 1.0 | 1.0 |
Camera, Video, Display
Max screen resolution | 2340x1080 | 2560x1600 |
Max camera resolution | 1x 48MP, 2x 24MP | 1x 20MP |
Max Video Capture | 4K@30fps | 4K@30fps |
Video codec support | H.264 (AVC) H.265 (HEVC) VP8 VP9 |
H.264 (AVC) H.265 (HEVC) VP8 |
Wireless
4G network | Yes | Yes |
5G network | Yes | Yes |
Peak Download Speed | 0.6 Gbps | 0.3 Gbps |
Peak Upload Speed | 0.15 Gbps | 0.05 Gbps |
Wi-Fi | 4 (802.11n) | 5 (802.11ac) |
Bluetooth | 5.1 | 4.2 |
Satellite navigation | BeiDou GPS GLONASS |
BeiDou GPS Galileo GLONASS |
Supplemental Information
Launch Date | 2020 Quarter 4 | 2015 Quarter 2 |
Partnumber | Hi6260 | Hi3635 |
Vertical Segment | Mobiles | Mobiles |
Positioning | Mid-end | Mid-end |
Popular comparisons:
1
MediaTek Dimensity 1000 vs MediaTek Dimensity 700
2
MediaTek Helio G100 vs Apple M2 (iPad)
3
Unisoc Tiger T616 vs Samsung Exynos 2400
4
HiSilicon Kirin 970 vs MediaTek Dimensity 8020
5
HiSilicon Kirin 985 5G vs Qualcomm Snapdragon 730G
6
Qualcomm Snapdragon 439 vs Qualcomm Snapdragon 632
7
Samsung Exynos 2500 vs Samsung Exynos 9611
8
MediaTek Helio G85 vs MediaTek Dimensity 1000 Plus
9
Samsung Exynos 7880 vs MediaTek Dimensity 9200
10
Samsung Exynos 9825 vs Samsung Exynos 1280