HiSilicon Kirin 960 vs Unisoc Tiger T606
When comparing the HiSilicon Kirin 960 with the Unisoc Tiger T606 processors, several key specifications stand out.
Starting with the CPU cores and architecture, the HiSilicon Kirin 960 features four Cortex-A73 cores clocked at 2.4 GHz, along with four Cortex-A53 cores at 1.8 GHz. On the other hand, the Unisoc Tiger T606 has two Cortex-A75 cores running at 1.6 GHz, paired with six Cortex-A55 cores, also clocked at 1.6 GHz.
In terms of the number of cores, both processors have eight cores, providing efficient and multi-threaded performance.
When considering the instruction set, the HiSilicon Kirin 960 adopts the ARMv8-A, while the Unisoc Tiger T606 adopts the ARMv8.2-A, indicating a slight advancement in instruction set architecture in the latter processor.
In terms of lithography, the HiSilicon Kirin 960 is manufactured on a 16 nm process, while the Unisoc Tiger T606 is manufactured on a more advanced 12 nm process. This indicates that the Unisoc processor may offer better power efficiency and heat dissipation.
Regarding the number of transistors, the HiSilicon Kirin 960 has approximately 4000 million transistors, while the Unisoc Tiger T606 does not provide this specific information.
Lastly, the thermal design power (TDP) of the HiSilicon Kirin 960 is rated at 5 Watts, while the Unisoc Tiger T606 has a higher TDP of 10 Watts. This suggests that the Unisoc processor may consume more power and potentially generate more heat.
Overall, the HiSilicon Kirin 960 excels in terms of CPU clock speeds and fabrication technology, while the Unisoc Tiger T606 offers improved lithography and a more recent instruction set architecture. The choice between these processors would largely depend on the specific requirements of the device or application in which they are being used.
Starting with the CPU cores and architecture, the HiSilicon Kirin 960 features four Cortex-A73 cores clocked at 2.4 GHz, along with four Cortex-A53 cores at 1.8 GHz. On the other hand, the Unisoc Tiger T606 has two Cortex-A75 cores running at 1.6 GHz, paired with six Cortex-A55 cores, also clocked at 1.6 GHz.
In terms of the number of cores, both processors have eight cores, providing efficient and multi-threaded performance.
When considering the instruction set, the HiSilicon Kirin 960 adopts the ARMv8-A, while the Unisoc Tiger T606 adopts the ARMv8.2-A, indicating a slight advancement in instruction set architecture in the latter processor.
In terms of lithography, the HiSilicon Kirin 960 is manufactured on a 16 nm process, while the Unisoc Tiger T606 is manufactured on a more advanced 12 nm process. This indicates that the Unisoc processor may offer better power efficiency and heat dissipation.
Regarding the number of transistors, the HiSilicon Kirin 960 has approximately 4000 million transistors, while the Unisoc Tiger T606 does not provide this specific information.
Lastly, the thermal design power (TDP) of the HiSilicon Kirin 960 is rated at 5 Watts, while the Unisoc Tiger T606 has a higher TDP of 10 Watts. This suggests that the Unisoc processor may consume more power and potentially generate more heat.
Overall, the HiSilicon Kirin 960 excels in terms of CPU clock speeds and fabrication technology, while the Unisoc Tiger T606 offers improved lithography and a more recent instruction set architecture. The choice between these processors would largely depend on the specific requirements of the device or application in which they are being used.
AnTuTu 10
Total Score
GeekBench 6 Single-Core
Score
GeekBench 6 Multi-Core
Score
CPU cores and architecture
Architecture | 4x 2.4 GHz – Cortex-A73 4x 1.8 GHz – Cortex-A53 |
2x 1.6 GHz – Cortex-A75 6x 1.6 GHz – Cortex-A55 |
Number of cores | 8 | 8 |
Instruction Set | ARMv8-A | ARMv8.2-A |
Lithography | 16 nm | 12 nm |
Number of transistors | 4000 million | |
TDP | 5 Watt | 10 Watt |
Memory (RAM)
Max amount | up to 6 GB | up to 8 GB |
Memory type | LPDDR4 | LPDDR4X |
Memory frequency | 1866 MHz | 1600 MHz |
Memory-bus | 2x32 bit | 2x16 bit |
Storage
Storage specification | UFS 2.1 | UFS 2.1 |
Graphics
GPU name | Mali-G71 MP8 | Mali-G57 MP1 |
GPU Architecture | Mali Bifrost | Mali Valhall |
GPU frequency | 900 MHz | 650 MHz |
Execution units | 8 | 1 |
Shaders | 128 | 16 |
DirectX | 11.3 | 12 |
OpenCL API | 1.2 | 2.1 |
OpenGL API | ES 3.2 | |
Vulkan API | 1.0 | 1.2 |
Camera, Video, Display
Max screen resolution | 1600x900@90Hz | |
Max camera resolution | 1x 20MP, 2x 12MP | 1x 24MP, 16MP + 8MP |
Max Video Capture | 4K@30fps | FullHD@30fps |
Video codec support | H.264 (AVC) H.265 (HEVC) VP8 VP9 |
H.264 (AVC) H.265 (HEVC) VP8 VP9 |
Wireless
4G network | Yes | Yes |
5G network | Yes | Yes |
Peak Download Speed | 0.6 Gbps | 0.3 Gbps |
Peak Upload Speed | 0.15 Gbps | 0.1 Gbps |
Wi-Fi | 5 (802.11ac) | 5 (802.11ac) |
Bluetooth | 4.2 | 5.0 |
Satellite navigation | BeiDou GPS Galileo GLONASS |
BeiDou GPS Galileo GLONASS |
Supplemental Information
Launch Date | 2016 October | 2021 October |
Partnumber | Hi3660 | T606 |
Vertical Segment | Mobiles | Mobiles |
Positioning | Flagship | Low-end |
Popular comparisons:
1
MediaTek Dimensity 1300 vs MediaTek Dimensity 8100
2
MediaTek Dimensity 9300 vs HiSilicon Kirin 980
3
MediaTek Dimensity 8000 vs MediaTek Helio G85
4
HiSilicon Kirin 710A vs Apple A13 Bionic
5
Samsung Exynos 9609 vs Qualcomm Snapdragon 435
6
MediaTek Helio A25 vs MediaTek Dimensity 9000 Plus
7
Qualcomm Snapdragon 425 vs Qualcomm Snapdragon 678
8
Samsung Exynos 2100 vs MediaTek Dimensity 1000
9
HiSilicon Kirin 820 5G vs Qualcomm Snapdragon 820
10
MediaTek Dimensity 7350 vs MediaTek Dimensity 8300