HiSilicon Kirin 710A vs Unisoc Tiger T616
The HiSilicon Kirin 710A and the Unisoc Tiger T616 are two processors that offer different specifications for mobile devices.
Starting with the HiSilicon Kirin 710A, it features an architecture of 4x 2.0 GHz Cortex-A73 cores and 4x 1.7 GHz Cortex-A53 cores. With a total of 8 cores, it is designed to provide a balance between power and efficiency. The processor utilizes the ARMv8-A instruction set and has a lithography of 14 nm, indicating its manufacturing process. The number of transistors is 5500 million, showcasing its complexity. Additionally, the Kirin 710A has a thermal design power (TDP) of 5 Watts, implying it operates at a lower power consumption level.
On the other hand, the Unisoc Tiger T616 features an architecture of 2x 2.0 GHz Cortex-A75 cores and 6x 1.8 GHz Cortex-A55 cores. Like the Kirin 710A, it also has 8 cores, but with a different distribution and design focus. The Tiger T616 utilizes the ARMv8.2-A instruction set, which may offer improved performance and features compared to the ARMv8-A used in the Kirin 710A. The lithography of the Tiger T616 is 12 nm, indicating a more advanced manufacturing process. It has a TDP of 10 Watts, which suggests it may consume more power than the Kirin 710A.
In summary, the HiSilicon Kirin 710A and the Unisoc Tiger T616 differ in their core distribution, instruction set, lithography, and TDP. The Kirin 710A focuses on a balance between power and efficiency with a 14 nm lithography and 5 Watt TDP, while the Tiger T616 emphasizes performance with a 12 nm lithography and 10 Watt TDP. Both processors offer unique specifications that cater to different mobile device requirements.
Starting with the HiSilicon Kirin 710A, it features an architecture of 4x 2.0 GHz Cortex-A73 cores and 4x 1.7 GHz Cortex-A53 cores. With a total of 8 cores, it is designed to provide a balance between power and efficiency. The processor utilizes the ARMv8-A instruction set and has a lithography of 14 nm, indicating its manufacturing process. The number of transistors is 5500 million, showcasing its complexity. Additionally, the Kirin 710A has a thermal design power (TDP) of 5 Watts, implying it operates at a lower power consumption level.
On the other hand, the Unisoc Tiger T616 features an architecture of 2x 2.0 GHz Cortex-A75 cores and 6x 1.8 GHz Cortex-A55 cores. Like the Kirin 710A, it also has 8 cores, but with a different distribution and design focus. The Tiger T616 utilizes the ARMv8.2-A instruction set, which may offer improved performance and features compared to the ARMv8-A used in the Kirin 710A. The lithography of the Tiger T616 is 12 nm, indicating a more advanced manufacturing process. It has a TDP of 10 Watts, which suggests it may consume more power than the Kirin 710A.
In summary, the HiSilicon Kirin 710A and the Unisoc Tiger T616 differ in their core distribution, instruction set, lithography, and TDP. The Kirin 710A focuses on a balance between power and efficiency with a 14 nm lithography and 5 Watt TDP, while the Tiger T616 emphasizes performance with a 12 nm lithography and 10 Watt TDP. Both processors offer unique specifications that cater to different mobile device requirements.
AnTuTu 10
Total Score
GeekBench 6 Single-Core
Score
GeekBench 6 Multi-Core
Score
CPU cores and architecture
Architecture | 4x 2.0 GHz – Cortex-A73 4x 1.7 GHz – Cortex-A53 |
2x 2.0 GHz – Cortex-A75 6x 1.8 GHz – Cortex-A55 |
Number of cores | 8 | 8 |
Instruction Set | ARMv8-A | ARMv8.2-A |
Lithography | 14 nm | 12 nm |
Number of transistors | 5500 million | |
TDP | 5 Watt | 10 Watt |
Memory (RAM)
Max amount | up to 6 GB | up to 6 GB |
Memory type | LPDDR4 | LPDDR4X |
Memory frequency | 1866 MHz | 1866 MHz |
Memory-bus | 2x32 bit | 2x16 bit |
Storage
Storage specification | UFS 2.1 | UFS 2.1 |
Graphics
GPU name | Mali-G51 MP4 | Mali-G57 MP1 |
GPU Architecture | Mali Bifrost | Mali Bifrost |
GPU frequency | 1000 MHz | 750 MHz |
Execution units | 4 | 1 |
Shaders | 64 | 16 |
DirectX | 12 | 11 |
OpenCL API | 2.0 | 2.1 |
OpenGL API | ES 3.2 | |
Vulkan API | 1.0 | 1.2 |
Camera, Video, Display
Max screen resolution | 2340x1080 | 2400x1080 |
Max camera resolution | 1x 48MP, 2x 24MP | 1x 64MP, 2x 32MP |
Max Video Capture | 4K@30fps | FullHD@60fps |
Video codec support | H.264 (AVC) H.265 (HEVC) VP8 VP9 |
H.264 (AVC) H.265 (HEVC) |
Wireless
4G network | Yes | Yes |
5G network | Yes | Yes |
Peak Download Speed | 0.6 Gbps | 0.3 Gbps |
Peak Upload Speed | 0.15 Gbps | 0.1 Gbps |
Wi-Fi | 4 (802.11n) | 5 (802.11ac) |
Bluetooth | 5.1 | 5.0 |
Satellite navigation | BeiDou GPS GLONASS |
BeiDou GPS Galileo GLONASS |
Supplemental Information
Launch Date | 2020 Quarter 4 | 2021 |
Partnumber | Hi6260 | T616 |
Vertical Segment | Mobiles | Mobiles |
Positioning | Mid-end | Mid-end |
Popular comparisons:
1
Qualcomm Snapdragon 425 vs MediaTek Helio G90
2
Unisoc Tanggula T740 5G vs Apple A10X Fusion
3
Qualcomm Snapdragon 6s Gen 3 vs Qualcomm Snapdragon 730
4
MediaTek Dimensity 7020 vs Samsung Exynos 7870
5
Unisoc T8300 vs MediaTek Helio G81
6
MediaTek Helio P35 vs MediaTek Dimensity 1000 Plus
7
Qualcomm Snapdragon 4s Gen 2 vs MediaTek Dimensity 8350
8
Qualcomm Snapdragon 8 Gen 2 vs Qualcomm Snapdragon 712
9
Qualcomm Snapdragon 888 vs MediaTek Helio G90T
10
Unisoc Tiger T618 vs Qualcomm Snapdragon 845